MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / G* =  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.






                                           - [   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]


O ESTADO QÂNTICO DE GRACELI


                                           - [   /.    ] [  []

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]












                                           - [   /.    ] [ 

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]


O ESTADO QÂNTICO DE GRACELI


                                           - [   /.    ] [  []

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]





As partículas virtuais também devem respeitar as leis físicas, de forma que cada vértice em um diagrama de Feynman deve sempre conservar a carganúmero bariôniconúmero leptônicoenergia e momento; mas não necessariamente a massa - que em física de altas energias é tratada como se energia fosse.[3]

Contudo, as partículas virtuais por si não têm que exibir relações de dispersão condizentes às esperadas para entes físicos reais. Isso quer dizer que as massas, as energias e os momentos de partículas virtuais podem ter, independentemente, quaisquer valores - os necessários para não se violarem as leis físicas junto às partículas envolvidas, junto aos vértices nos diagramas de Feynman [4].

A situação é um pouco sutil: uma partícula real livre obedece à relação de dispersão, em cenário relativístico,

, mas para uma partícula virtual essa relação notoriamente não é satisfeita. Tentando colocar as partículas virtuais como partículas no limite de existência, alguns autores "corrigem" essa situação afirmando que as partículas virtuais podem violar a conservação da energia - usualmente por instantes ínfimos - no limite observacional; ou argumentam que a a energia extra necessária à correção advém do Princípio da Incerteza. Como descrito por David Griffiths, esses raciocínios não são, contudo, corretos. [4][nota 2].

A massa do elétron virtual, visto no diagrama ao lado, não corresponde à massa de um elétron real, e nem sua relação de dispersão é a de uma partícula física. Raciocínio estende-se ao fóton virtual atrelado; e a todas as demais partículas virtuais.

Partículas virtuais são abstrações matemáticas, não partículas físicas que se encontram no "limiar da existência".




Comments